Abstract

AbstractA radical γ is prime-like if, for every prime ring A, the polynomial ring A[x] is γ-semisimple. In this paper, we study properties of prime-like radicals. In particular, we give necessary and sufficient conditions for a radical γ containing the prime radical β to be prime-like. This allows us to easily find distinct special radicals that coincide on simple rings and on polynomial rings, which answers a question put by Ferrero. It also allows us to reformulate a long-standing open problem of Gardner in terms of prime-like radicals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.