Abstract

A graph $G$ of order $n$ is said to be a prime graph if its vertices can be labeled with the first $n$ positive integers in such a way that the labels of any two adjacent vertices in $G$ are relatively prime. If such a labeling on $G$ exists then it is called a prime labeling. In this paper we seek prime labeling for union of tadpole graphs. We derive a necessary condition for the existence of prime labelings of graphs that are union of tadpole graphs and further show that the condition is also sufficient in case of union of two or three tadpole graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.