Abstract
Prüfer domains and subclasses of integral domains such as Dedekind domains admit characterizations by means of the properties of their ideal lattices. Interestingly, a Leavitt path algebra [Formula: see text], in spite of being noncommutative and possessing plenty of zero divisors, seems to have its ideal lattices possess the characterizing properties of these special domains. In [The multiplicative ideal theory of Leavitt path algebras, J. Algebra 487 (2017) 173–199], it was shown that the ideals of [Formula: see text] satisfy the distributive law, a property of Prüfer domains and that [Formula: see text] is a multiplication ring, a property of Dedekind domains. In this paper, we first show that [Formula: see text] satisfies two more characterizing properties of Prüfer domains which are the ideal versions of two theorems in Elementary Number Theory, namely, for positive integers [Formula: see text], [Formula: see text] and [Formula: see text]. We also show that [Formula: see text] satisfies a characterizing property of almost Dedekind domains in terms of the ideals whose radicals are prime ideals. Finally, we give necessary and sufficient conditions under which [Formula: see text] satisfies another important characterizing property of almost Dedekind domains, namely, the cancellative property of its nonzero ideals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.