Abstract

We analyze the asymptotic behavior of a non-Newtonian Stokes system, posed in a Hele–Shaw cell, i.e. a thin three-dimensional domain which is confined between two curved surfaces and contains a cylindrical obstacle. The fluid is assumed to be of power-law type defined by the exponent . By letting the thickness of the domain tend to zero we obtain a generalized form of the Poiseuille law, i.e. the limit velocity is a nonlinear function of the limit pressure gradient. The flow is assumed to be driven by an external pressure which is applied as a normal stress along the lateral part of the boundary. On the remaining part of the boundary we impose a no-slip condition. The two-dimensional limit problem for the pressure is a generalized form of the -Laplace equation, , with a coefficient called ‘flow factor’, which depends on the geometry as well as the power-law exponent. The boundary conditions are preserved in the limit as a Dirichlet condition for the pressure on the lateral boundary and as a Neumann condition for the pressure on the solid obstacle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call