Abstract
We first consider the class of monoids in which every left invertible element is also right invertible, and prove that if a monoid belonging to this class admits a finitely presented Bruck–Reilly extension then it is finitely generated. This allow us to obtain necessary and sufficient conditions for the Bruck–Reilly extensions of this class of monoids to be finitely presented. We then prove that thes 𝒟-classes of a Bruck–Reilly extension of a Clifford monoid are Bruck–Reilly extensions of groups. This yields another necessary and sufficient condition for these Bruck–Reilly extensions to be finitely generated and presented. Finally, we show that a Bruck–Reilly extension of a Clifford monoid is finitely presented as an inverse monoid if and only if it is finitely presented as a monoid, and that this property cannot be generalized to Bruck–Reilly extensions of arbitrary inverse monoids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.