Abstract
Clustering is a one of the most important tasks of data mining. Algorithms like the Fuzzy C-Means and Possibilistic C-Means provide good result both for the static data and data streams. All clustering algorithms compute centers from chunk of data, what requires a lot of time. If the rate of incoming data is faster than speed of algorithm, part of data will be lost. To prevent such situation, some pre-processing algorithms should be used. The purpose of this paper is to propose a pre-processing method for clustering algorithms. Experimental results show that proposed method is appropriate to handle noisy data and can accelerate processing time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.