Abstract

The prefixed Varshamov-Tenengolts (VT) codes, which are subsets of VT codes with predetermined prefixes, can be used for error correction over segmented edit channels. In this paper, we investigate the construction and analysis of this class of codes. First, we derive upper bounds on the size of zero-error codes for segmented edit channels with segment-by-segment decoding. Second, we establish a one-to-one correspondence between prefixed VT codes and Levenshtein codes. Based on this relation, we can obtain explicit formulas on the size of prefixed VT codes via the existing results on the size of Levenshtein codes. Third, we construct a new zero-error prefixed VT code and show that the size of the constructed code is strictly larger than that of the existing prefixed VT code for the segmented deletion channel. Finally, an efficient systematic encoding method of prefixed VT codes is proposed for the segmented edit channels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.