Abstract

A numerical study has been performed to simulate the tip leakage flow and heat transfer on the first stage of a high-pressure turbine, which represents a modern gas turbine blade geometry. The low Re k-ω (SST) model is used to model the turbulence. Calculations are performed for both a flat and a squealer blade tip for three different tip gap clearances. The computations were carried out using a single blade with periodic conditions imposed along the boundaries in the circumferential (pitch) direction. The predicted tip heat transfer and static pressure distributions show reasonable agreement with experimental data. It was also observed that the tip clearance has a significant influence on local tip heat transfer coefficient distribution. The flat tip blade provides a higher overall heat transfer coefficient than the squealer tip blade.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.