Abstract

We argue that prediction intervals based on predictive likelihood do not correct for curvature with respect to the parameter value when they implicitly approximate an unknown probability density. Partly as a result of this difficulty, the order of coverage error associated with predictive intervals and predictive limits is equal to only the inverse of sample size. In this respect those methods do not improve on the simpler, 'naive' or 'estimative' approach. Moreover, in cases of practical importance the latter can be preferable, in terms of both the size and sign of coverage error. We show that bootstrap calibration of both naive and predictive-likelihood approaches increases coverage accuracy of prediction intervals by an order of magnitude, and, in the case of naive intervals, preserves that method's numerical and analytical simplicity. Therefore, we argue, the bootstrap-calibrated naive approach is a particularly competitive alternative to more conventional, but more complex, techniques based on predictive likelihood.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.