Abstract

A theoretical model for predicting boat drift for search and rescue missions is presented in this work. The drift model is based on the law of physics which govern the motion of a floating body in a given wind and surface current field. In terms of the empirical aerodynamics force coefficients of the boat or any other drifting object, external wind field, and current field, the drift velocity of the boat being searched for can be obtained. The uncertainty of the characteristics of the boat’s drift is evaluated by interval analysis of the uncertainties of the characteristics of the drifting boat and external forcing fields. The search area expansion and the source of uncertainty are systematically evaluated. The current statistical model-based operational definitions of leeway drift, leeway rate, leeway angle, divergence angle, leeway divergence, downwind component of leeway, and crosswind component of leeway are clarified in light of the presented theoretical model. The divergence angle and leeway divergence are evaluated through the interval analysis of the uncertainty of the parameters involved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.