Abstract

With large available bandwidth, millimeter wave (mm-wave) communications have attracted considerable research interests because of their potential to achieve multi-giga bps rates. However, one of the main challenges for mm-wave is high pathloss. To address this problem, full-duplex (FD) relaying can be used to increase the effective transmission distance and the spectral efficiency. Thus, studying the application of FD relaying in mm-wave communications will be of value. However, one of the main challenges in FD mm-wave relaying is the residual self-interference (SI), which includes line-of-sight (LOS) and non-LOS parts. To eliminate the SI and improve the spectral efficiency, we propose an orthogonal matching pursuit-based SI-cancellation precoding algorithm. Then, we propose an energy consumption model and analyze the energy efficiency performance. We formulate the joint spectral efficiency and energy efficiency optimization problem, which can be transformed into a convex problem. The numerical results show that the FD precoding scheme can effectively eliminate the residual SI and achieve approximately twice the spectral efficiency of the conventional half-duplex system. We also show that in low-spectral-efficiency regions, the optimal energy efficiency can be achieved, but the achievable energy efficiency will decrease in high-spectral-efficiency regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call