Abstract

Road irregularities induce vertical and longitudinal vibrations of the sprung and unsprung masses, which affect vehicle comfort. While the vertical dynamics and related compensation techniques are extensively covered by the suspension control literature, the longitudinal dynamics on uneven road surfaces are less frequently addressed, and are significantly influenced by the tires and suspension systems. The relatively slow response of internal combustion engines does not allow any form of active compensation of the effect of road irregularities. However, in-wheel electric powertrains, in conjunction with pre-emptive control based on the information on the road profile ahead, have some potential for effective compensation, which, however, has not been explored yet. This paper presents a proof-of-concept nonlinear model predictive control (NMPC) implementation based on road preview, which is preliminarily assessed with a simulation model of an all-wheel drive electric vehicle with in-wheel motors, including a realistic tire model for ride comfort simulation. The major improvement brought by the proposed road preview controller is evaluated through objective performance indicators along multiple maneuvers, and is confirmed by the comparison with two benchmarking feedback controllers from the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.