Abstract
The paper presents the experimental research results for the horizontal-axis wind turbine with coaxial wind rotors. It is assumed that such coaxial layout of the wind turbine can be used for designing of the wind energy systems with relatively low capacity and limited location area since the coaxial systems have advantages in overall dimensions and maximum using of the swept area. Possibility of coaxial horizontal-axis wind turbines usage is determined by positive or negative effect of turbines on each other. Literature review shows that closely spaced wind turbines can generally improve flow characteristics under certain conditions and consequently increase wind energy system efficiency. We have carried out the experiments in T-5 wind tunnel with two coaxial model two-bladed wind turbines which rotate in opposite directions. The generator of the first turbine and first turbine itself are located on the same shaft in the test section of wind tunnel. The second generator is in a lower compartment of the experimental setup and is connected by the transmission. We have measured the dynamic, energy and frequency characteristics of wind energy systems based on created experimental setup. A Pitot tube and automatic metering devises have measured the dynamic parameters and energy performance respectively. A frequency counter has saved all of the data obtained with the laser frequency measurement technique. The experiment has some specific technical features so the data received need to be corrected. The coaxial wind turbine power has decreased in comparison to isolated wind turbine at low wind speed. The return flows reinforce turbulence so wind speed falls. If wind speed increases, the impact of the return flows decreases, the coaxial wind turbine capacity significantly grows and exceeds isolated turbine capacity. The possibility of using wind turbines with coaxial wind rotors for autonomous power supply is shown. Such wind turbines are perspective and require more detailed analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.