Abstract
Pre-Lie (or Vinberg) algebras arise from flat and torsion-free connections on differential manifolds. They have been studied extensively in recent years, both from algebraic operadic points of view and through numerous applications in numerical analysis, control theory, stochastic differential equations and renormalization. Butcher series are formal power series founded on pre-Lie algebras, used in numerical analysis to study geometric properties of flows on euclidean spaces. Motivated by the analysis of flows on manifolds and homogeneous spaces, we investigate algebras arising from flat connections with constant torsion, leading to the definition of post-Lie algebras, a generalization of pre-Lie algebras. Whereas pre-Lie algebras are intimately associated with euclidean geometry, post-Lie algebras occur naturally in the differential geometry of homogeneous spaces, and are also closely related to Cartan's method of moving frames. Lie--Butcher series combine Butcher series with Lie series and are used to analyze flows on manifolds. In this paper we show that Lie--Butcher series are founded on post-Lie algebras. The functorial relations between post-Lie algebras and their enveloping algebras, called D-algebras, are explored. Furthermore, we develop new formulas for computations in free post-Lie algebras and D-algebras, based on recursions in a magma, and we show that Lie--Butcher series are related to invariants of curves described by moving frames.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.