Abstract

It is shown that if ϕ is a given function out of a large class satisfying a certain regularity condition, then a supercritical age-dependent branching process {Z(t)} exists with deterministic immigration and given life-length and family-size distributions such that Z(t)/(eat ϕ(t)) converges in probability to a non-zero constant, a being the appropriate Malthusian parameter. As an easy corollary one discovers the asymptotic behaviour of some processes with random immigration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.