Abstract

The arithmetical complexity of infinite words, defined by Avgustinovich, Fon-Der-Flaass and the author in 2000, is the number of words of length n which occur in the arithmetical subsequences of the infinite word. This is one of the modifications of the classical function of subword complexity, which is equal to the number of factors of the infinite word of length n. In this paper, we show that the orders of growth of the arithmetical complexity can behave as many sub-polynomial functions. More precisely, for each sequence u of subword complexity f u (n) and for each prime p > 3 we build a Toeplitz word on the same alphabet whose arithmetical complexity is a(n) = Θ(nf u ([log pn ])).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.