Abstract
Consider nonlinear stochastic difference equations $X(n+1) = X(n)+hf(X(n))+\sqrthg(X(n))\xi_{n+1},$ $n \in \N,$ $X(0) =$ ς $\in \mathbb{R},$ (1) where $\{\xi_n\}_{n\in \N}$ are independent $fr{N} (0,1)$-distributed random variables, $h>0$, can be viewed as a discretization of Ito stochastic differential equations (SDEs). We discuss the following. If, for all $t\ge 0$, the solution $Y(t)$ of the corresponding SDE is positive, or $Y(t) \in [0,K]$ for some $K>0$, does the solution $X(n)$ of related discretization (1) possess the same properties with large probability? In general, the answer is no. However in many cases we are able to discretize the SDE related to (1) over a compact interval $[0,T]$ in such a way that an adequate qualitative behavior is observed with an arbitrarily high probability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.