Abstract

Tree Automata With Global Equality Constraints (aka. positive TAGED, or TAGE) are a variety of Bottom-Up Tree Automata, with added expressive power. While there is interest in using this formalism to extend existing regular model-checking frameworks --- built on vanilla tree automata --- such a project can only be practical if the algorithmic complexity of common decision problems is kept tractable. Unfortunately, useful TAGE decision problems sport very high complexities: Membership is NP-complete, Emptiness and Finiteness are both ExpTime-complete, Universality and Inclusion are undecidable. It is well-known that restricting the kind of equality constraints can have a dramatic effect on complexity, as evidenced by Rigid Tree Automata. However, the influence of the number of constraints on complexity has yet to be examined. In this paper, we focus on three common decision problems: Emptiness, Finiteness and Membership, and study their algorithmic complexity under a bounded number of equality constraints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.