Abstract

This paper deals with the systematic development of structure-preserving and robust approximations for a class of nonlinear partial differential equations on networks. The class includes, for example, gas pipe network systems described by barotropic Euler equations. Our approach is guided throughout by energy-based modeling concepts (port-Hamiltonian formalism, theory of Legendre transformation), which provide a convenient and general line of reasoning. Under mild assumptions on the approximation, local conservation of mass, an energy bound, and the inheritance of the port-Hamiltonian structure can be shown. Our approach is not limited to conventional space discretization but also covers complexity reduction of the nonlinearities by inexact integration. Thus, it can serve as a basis for structure-preserving model reduction. Combined with an energy stable time integration, we numerically demonstrate the applicability and good stability properties of the approach using the Euler equations as an example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.