Abstract
For quantum systems of zero-range interaction we discuss the mathematical scheme within which modelling the two-body interaction by means of the physically relevant ultra-violet asymptotics known as the "Ter-Martirosyan-Skornyakov condition" gives rise to a self-adjoint realisation of the corresponding Hamiltonian. This is done within the self-adjoint extension scheme of Krein, Visik, and Birman. We show that the Ter-Martirosyan-Skornyakov asymptotics is a condition of self-adjointness only when is imposed in suitable functional spaces, and not just as a pointwise asymptotics, and we discuss the consequences of this fact on a model of two identical fermions and a third particle of different nature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.