Abstract
We prove existence and almost everywhere regularity of an area minimizing soap film with a bound on energy spanning a given Jordan curve in Euclidean space R 3.The energy of a film is defined to be the sum of its surface area and the length of its singular branched set. The class of surfaces over which area is minimized includes images of disks, integral currents, nonorientable surfaces and soap films as observed by Plateau with a bound on energy. Our area minimizing solution is shown to be a smooth surface away from its branched set which is a union of Lipschitz Jordan curves of finite total length.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.