Abstract

A general model of the equations of generalized thermoelasticity for an infinite space weakened by a finite linear opening Mode-I crack is solving. The material is homogeneous and has isotropic properties of elastic half space. The crack is subjected to prescribed temperature and stress distribution. The formulation is applied to generalized thermoelasticity theories, the Lord-Shulman and Green-Lindsay theories, as well as the classical dynamical coupled theory. The normal mode analysis is used to obtain the exact expressions for the displacement components, force stresses, temperature, couple stresses and micro-stress distribution. The variations of the considered variables through the horizontal distance are illustrated graphically. Comparisons are made with the results between the three theories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.