Abstract

Abstract In this paper, we studied planar collisions of balls and cylinders with an emphasis on the coefficient of restitution (COR). We conducted a set of experiments using three types of materials: steel, wood, and rubber. Then, we estimated the kinematic COR for all collision pairs. We discovered unusual variations among the ball–ball (B–B) and ball–cylinder (B–C) CORs. We proposed a discretization method to investigate the cause of the variations in the COR. Three types of local contact models were used for the simulation: rigid body, bimodal linear, and bimodal Hertz models. Based on simulation results, we discovered that the bimodal Hertz model produced collision outcomes that had the greatest agreement with the experimental results. In addition, our simulations showed that softer materials need to be segmented more than harder ones. Softer materials are materials with smaller collision stiffness values than harder ones. Moreover, we obtained a relationship between the collision stiffness ratio and the number of segments of softer materials to produce physically accurate simulations of B–C CORs. We validated this relationship and the proposed method by conducting two additional sets of experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call