Abstract

In this paper, wireless sensor network (WSN) security issue in the presence of an eavesdropper is analysed. The sensor-sink as well as sensor-eavesdropper channels are assumed to be subjected to generalized-K fading. According to the physical layer security framework, we employ round-robin, optimal sensor and cumulative distribution function-based scheduling scheme to enhance secure connection between sensor nodes and to attain low probability of intercept. Novel analytical results are given in a form of easy-to-compute analytical expressions for the intercept probability. Additionally, asymptotic closed-form expressions are derived and diversity orders of scheduling schemes are determined. Numerical results demonstrate important impacts of fading and shadowing parameters of main and wiretap links, network size and selected scheme on WSN security. Presented results are validated by independent Monte Carlo simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.