Abstract

In this paper, we investigate the existence and attractivity of periodic solutions for non-autonomous reaction-diffusion Cohen–Grossberg neural networks with discrete time delays. By combining the Lyapunov functional method with the contraction mapping principle and Poincaré inequality, we establish several criteria for the existence and global exponential stability of periodic solutions. More interestingly, Poincaré inequality is used to handle the reaction-diffusion terms, hence all the criteria depend on reaction-diffusion terms. These criteria are applicable in Cohen–Grossberg neural networks with both the Dirichlet and the Neumann boundary conditions on a general space domain. Several examples with numerical simulations are given to demonstrate the results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call