Abstract
In a previous paper (Presentations of subshifts and their topological conjugacy invariants. Doc. Math. 4 (1999), 285?340), the notion of $\lambda$-graph system has been introduced. The $\lambda$-graph systems are generalizations of finite directed labeled graphs. In this paper, we study periodic points of $\lambda$-graph systems. We introduce some invariants for a $\lambda$-graph system $\mathfrak L$ to count the cardinal number of $p$-periodic points of $\mathfrak L$. They are invariant under strong shift equivalence of $\lambda$-graph systems. We then consider the zeta functions of $\lambda$-graph systems, which are also invariant under strong shift equivalence of $\lambda$-graph systems. Some examples are also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.