Abstract
Abstract In this paper, the symmetric and asymmetric period-1 motions on the bifurcation tree are obtained for a periodically driven van der Pol-Duffing hardening oscillator through a semi-analytical method. Such a semi-analytical method develops an implicit mapping with prescribed accuracy. Based on the implicit mapping, the mapping structures are used to determine periodic motions in the van der Pol-Duffing oscillator. The symmetry breaks of period-1 motion are determined through saddle-node bifurcations, and the corresponding asymmetric period-1 motions are generated. The bifurcation and stability of period-1 motions are determined through eigenvalue analysis. To verify the semi-analytical solutions, numerical simulations are also carried out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.