Abstract

Optical wireless communication (OWC) with orbital angular momentum (OAM)-based spatial multiplexing enables to offer ultra-high information capacity as well as high spectral and energy efficiencies, which is a promising alternative to establish the fronthaul toward the fifth generation (5-G) wireless communication networks. The air turbulence in the optical wireless channel, however, would result in adverse effect in the performance of OWC with spatial multiplexing. We study the impact of air turbulence on the purities of multiplexed OAM states. The split step propagation scheme combining with the Monte-Carlo phase screen method is employed to accurately emulate the OWC link with OAM-based spatial multiplexing. The numerical results reveal that the air turbulence-induced cross-talk among the parallel OAM spatial channels would severely degrades the performance of the fronthaul in 5-G which is established by the OWC with OAM-based spatial multiplexing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call