Abstract

This study involves the preparation of a double-skinned thin film composite (TFC) and thin film nanocomposite (TFN) hollow fiber (HF) membrane for forward osmosis (FO) applications. The porous substrate consisted of a Polyvinyl chloride (PVC) / Polycarbonate (PC) blend HF membrane. Interfacial polymerization (IP) was then applied to coat a polyamide (PA) layer on the lumen surface and the porous substrate's outer surface. In addition, the impact of the outer PA active layer and the addition of nanoparticles to the outer selective layer on the FO flux and internal concentration polarization (ICP) were studied. By adding the second active layer to the substrate, water flux, reverse salt flux and ICP decreased. Also, the decline of water flux decreased over time due to the fouling agent. To compensate for the decrease in water flux in the double-skinned membrane, graphene oxide (GO) nanoparticles with 0.05% and 0.1%wt were added to the outer active layer. Addition of 0.1%wt graphene oxide nanoparticle to the outer active layer can help to improve water flux about 78% without spoiling the reverse salt flux. Moreover, the performance of double-skinned membranes against osmotic dilution process for oily wastewater treatment was investigated. The findings of this study demonstrated that the novel double-skinned TFN HF membrane exhibited high FO performance with low ICP and fouling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.