Abstract
This paper describes the Classification of bulk OCT retinal fundus images of normal and diabetic retinopathy using the Intensity histogram features, Gray Level Co-Occurrence Matrix (GLCM), and the Gray Level Run Length Matrix (GLRLM) feature extraction techniques. Three features—Intensity histogram features, GLCM, and GLRLM were taken and, that features were compared fairly. A total of 301 bulk OCT retinal fundus color images were taken for two different varieties which are normal and diabetic retinopathy. For classification and feature extraction, a filtered image output based on a fourth-order PDE is used. Using OCT retinal fundus images, the most effective feature extraction method is identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ELCVIA Electronic Letters on Computer Vision and Image Analysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.