Abstract

Popular clustering algorithms based on usual distance functions (e.g., the Euclidean distance) often suffer in high dimension, low sample size (HDLSS) situations, where concentration of pairwise distances and violation of neighborhood structure have adverse effects on their performance. In this article, we use a new data-driven dissimilarity measure, called MADD, which takes care of these problems. MADD uses the distance concentration phenomenon to its advantage, and as a result, clustering algorithms based on MADD usually perform well for high dimensional data. We establish it using theoretical as well as numerical studies. We also address the problem of estimating the number of clusters. This is a challenging problem in cluster analysis, and several algorithms are available for it. We show that many of these existing algorithms have superior performance in high dimensions when they are constructed using MADD. We also construct a new estimator based on a penalized version of the Dunn index and prove its consistency in the HDLSS asymptotic regime. Several simulated and real data sets are analyzed to demonstrate the usefulness of MADD for cluster analysis of high dimensional data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.