Abstract
Sammon's mapping is conventionally used for exploratory data projection, and as such is usually inapplicable for classification. In this paper we apply a neural network (NN) implementation of Sammon's mapping to classification by extracting an arbitrary number of projections. The projection map and classification accuracy of the mapping are compared with those of the auto-associative NN (AANN), multilayer perceptron (MLP) and principal component (PC) feature extractor for chromosome data. We demonstrate that chromosome classification based on Sammon's (unsupervised) mapping is superior to the classification based on the AANN and PC feature extractor and highly comparable with that based on the (supervised) MLP. c 1998 Pattern Recognition Society.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.