Abstract

This paper analyzes the passivity and feedback passivity of discrete-time-switched nonlinear systems with passive and nonpassive modes that are affine in the control input. When a nonpassive mode is active, the increase in storage function is not necessarily bounded by the energy supplied to the switched system at every time step. Therefore, a switched system with at least one nonpassive mode is defined to be nonpassive in the classical passivity theory. In this paper, we propose a framework to analyze the passivity of such switched systems in a more general sense. We consider switched nonlinear systems which are affine in the control input and may consist of passive, feedback passive modes, and modes which cannot be rendered passive using feedback. In the proposed framework, we prove that a switched nonlinear system is locally feedback passive if and only if its zero dynamics are locally passive. A lower bound on the ratio of total activation time between (feedback) passive and nonfeedback passive modes is obtained to guarantee passive zero dynamics. Finally, we prove that two important properties of classical passivity still hold for the proposed passivity definition, that is: 1) output feedback control can be used to stabilize the switched system, and 2) parallel and negative feedback interconnections of two such passive systems are also passive.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.