Abstract

In this paper, the passivity analysis problem is investigated for a class of discrete-time stochastic neural networks (DSNNs) with randomly occurring mixed time delays (ROMDs). The mixed delays comprise time-varying discrete delays, infinite-distributed delays as well as finite-distributed delays. A set of Bernoulli-distributed white sequences is used to account for the random nature of the occurrence of the mixed time delays. In addition, stochastic disturbances are taken into consideration to describe the state-dependent noises caused possibly by electronic devices and hardware implementation of neural networks. By using a combination of Lyapunov-Krasovskii functional, free-weighting matrix approach and stochastic analysis technique, we establish sufficient conditions guaranteeing the passivity performance of the underlying DSNNs. Furthermore, a delay-dependent robust passivity criterion is presented to deal with the parameter uncertainties in the DSNNs with ROMDs. A simulation example is provided to verify the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.