Abstract

The need for robust reagents for biomarker detection has become an increasing necessity in designing point-of-care diagnostics. We report a non-emissive, cyclometalated iridium(III) complex, Ir(ppy)2(H2O)2+ (Ir1), which, on coordination to a histidine-containing protein bound to the surface of a magnetic particle, elicits a rapid, long-lived phosphorescent signal. The interactions between Ir1 and numerous other amino acids were examined for activity, but only the addition of histidine resulted in a four orders of magnitude enhancement in signal intensity. Buffer conditions (pH and temperature) and composition (coordinating vs. non-coordinating and ionic strength) were optimized to achieve maximum signal and stability of Ir1. The activity of the probe under optimized conditions was validated with BNT-II, a histidine-containing branched peptide mimic of the malarial biomarker Plasmodium falciparum histidine-rich protein II (PfHRPII). By comparing Ir1 binding to BNT-II versus l-histidine, steric and quenching effects were noted in the peptide. Despite these deviations from ideal conditions, signal response reached saturation with both BNT-II and recombinant HRPII (rcHRPII). When immobilized on the surface of a 50μM magnetic agarose particles, the limit of detection of rcHRPII was 14.5nM. The robust signal response of this inorganic probe lends itself to future applications in on-particle enzyme-linked immunosorbent assay (ELISA)-based assays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call