Abstract

In this paper, we investigate the problem of estimating the volatility from the underlying asset price for discrete-time observations. This topic has attracted much research interest due to the key role of the volatility in finance. In this paper, we consider the Heston stochastic volatility model with jumps and we develop a new polynomial filtering method for the estimation of the volatility. The method relies on a linear filter which uses a polynomial state-space formulation of the discrete version of the continuous-time model. We demonstrate that a higher-order polynomial filtering method can be efficiently applied in the context of stochastic volatility models. Then, we compare our approach with some, well-established, techniques in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.