Abstract

Critical kernels constitute a general framework in the category of abstract complexes for the study of parallel homotopic thinning in any dimension. In this article, we present new results linking critical kernels to minimal non-simple sets (MNS) and P-simple points, which are notions conceived to study parallel thinning in discrete grids. We show that these two previously introduced notions can be retrieved, better understood and enriched in the framework of critical kernels. In particular, we propose new characterizations which hold in dimensions 2, 3 and 4, and which lead to efficient algorithms for detecting P-simple points and minimal non-simple sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.