Abstract
Belief revision aims at incorporating, in a rational way, a new piece of information into the beliefs of an agent. Most works in belief revision suppose a classical logic setting, where the beliefs of the agent are consistent. Moreover, the consistency postulate states that the result of the revision should be consistent if the new piece of information is consistent. But in real applications it may easily happen that (some parts of) the beliefs of the agent are not consistent. In this case then it seems reasonable to use paraconsistent logics to derive sensible conclusions from these inconsistent beliefs. However, in this context, the standard belief revision postulates trivialize the revision process. In this work we discuss how to adapt these postulates when the underlying logic is Priest's LP logic, in order to model a rational change, while being a conservative extension of AGM/KM belief revision. This implies, in particular, to adequately adapt the notion of expansion. We provide a representation theorem and some examples of belief revision operators in this setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.