Abstract

The study of pairs of modules (over a Dedekind domain) arises from two different perspectives, as a starting step in the analysis of tuples of submodules of a given module, or also as a particular case in the analysis of Abelian structures made by two modules and a morphism between them. We discuss how these two perspectives converge to pairs of modules, and we follow the latter one to obtain an alternative approach to the classification of pairs of torsionfree objects. Then we restrict our attention to pairs of free modules. Our main results are that the theory of pairs of free Abelian groups is co-recursively enumerable, and that a few remarkable extensions of this theory are decidable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.