Abstract

It is well-known that the coset spaces G(k((z)))/G(k[[z]]), for a reductive group G over a field k, carry the geometric structure of an inductive limit of projective k-schemes. This k-ind-scheme is known as the affine Grassmannian for G. From the point of view of number theory it would be interesting to obtain an analogous geometric interpretation of quotients of the form G(W(k)[1/p])/G(W(k)), where p is a rational prime, W denotes the ring scheme of p-typical Witt vectors, k is a perfect field of characteristic p and G is a reductive group scheme over W(k). The present paper is an attempt to describe which constructions carry over from the function field case to the p-adic case, more precisely to the situation of the p-adic affine Grassmannian for the special linear group G=SL_n. We start with a description of the R-valued points of the p-adic affine Grassmannian for SL_n in terms of lattices over W(R), where R is a perfect k-algebra. In order to obtain a link with geometry we further construct projective k-subvarieties of the multigraded Hilbert scheme which map equivariantly to the p-adic affine Grassmannian. The images of these morphisms play the role of Schubert varieties in the p-adic setting. Further, for any reduced k-algebra R these morphisms induce bijective maps between the sets of R-valued points of the respective open orbits in the multigraded Hilbert scheme and the corresponding Schubert cells of the p-adic affine Grassmannian for SL_n.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.