Abstract

An algorithmic procedure is developed for the random expansion of a given training set to combat overfitting and improve the generalization ability of backpropagation trained multilayer perceptrons (MLPs). The training set is K-means clustered and locally most entropic colored Gaussian joint input-output probability density function (pdf) estimates are formed per cluster. The number of clusters is chosen such that the resulting overall colored Gaussian mixture exhibits minimum differential entropy upon global cross-validated shaping. Numerical studies on real data and synthetic data examples drawn from the literature illustrate and support these theoretical developments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.