Abstract
We consider one system of partial derivative equations of the parabolic type as a model of a simple 3D gene network in the presence of diffusion of its three components. Using discretization of the phase portrait of this system, comparison theorems, and other methods of the qualitative theory of differential equations, we show uniqueness of the equilibrium solution to this system and find conditions of instability of this equilibrium. Then, we obtain sufficient conditions of existence of at least one oscillating functioning regime of this gene network. An estimate of lower and upper bounds for periods of these oscillations is given as well. In quite a similar way, these results on the existence of cycles in 3D gene networks can be extended to higher-dimensional systems of parabolic or other evolution equations in order to construct mathematical models of more complicated molecular–genetic systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.