Abstract
In this note, we consider rational cuspidal plane curves having exactly one cusp whose complements have logarithmic Kodaira dimension two. We classify such curves with the property that the strict transforms of them via the minimal embedded resolution of the cusp have the maximal self-intersection number. We show that the curves given by the classification coincide with those constructed by Orevkov.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.