Abstract
Reed–Solomon codes are widely used to establish a reliable channel to transmit information in digital communication which has a strong error correction capability and a variety of efficient decoding algorithm. Usually we use the maximum likelihood decoding (MLD) algorithm in the decoding process of Reed–Solomon codes. MLD algorithm relies on determining the error distance of received word. Dür, Guruswami, Wan, Li, Hong, Wu, Yue and Zhu et al. got some results on the error distance. For the Reed–Solomon code [Formula: see text], the received word [Formula: see text] is called an ordinary word of [Formula: see text] if the error distance [Formula: see text] with [Formula: see text] being the Lagrange interpolation polynomial of [Formula: see text]. We introduce a new method of studying the ordinary words. In fact, we make use of the result obtained by Y.C. Xu and S.F. Hong on the decomposition of certain polynomials over the finite field to determine all the ordinary words of the standard Reed–Solomon codes over the finite field of [Formula: see text] elements. This completely answers an open problem raised by Li and Wan in [On the subset sum problem over finite fields, Finite Fields Appl. 14 (2008) 911–929].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.