Abstract

AbstractThis paper concerns automorphisms of the computably enumerable sets. We prove two results relating semilow sets and prompt degrees via automorphisms, one of which is complementary to a recent result of Downey and Harrington. We also show that the property of effective simplicity is not invariant under automorphism, and that in fact every promptly simple set is automorphic to an effectively simple set. A major technique used in these proofs is a modification of the Harrington-Soare version of the method of Harrington-Soare and Cholak for constructing Δ30 automorphisms; this modification takes advantage of a recent result of Soare on the extension of “restricted” automorphisms to full automorphisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.