Abstract

Aiming at the long term and high-precision performance maintenance requirements of the satellite-borne four-axis redundant inertial measurement unit (IMU) in space, the satellite navigation velocity information, the attitude information provided by the star sensor and the redundant measurement output are used as references to derive the measurement model, including the star sensor installation error. Three rotation sequences of optimal observation, sub-optimal observation, and under-observation are designed and compared. The Kalman filter is used to calibrate the redundant IMU in the orbit. The numerical simulation shows that all three rotation sequences can calibrate more than 91% of the constant error, which meets the requirements of the use, and the calibration accuracy of the optimal rotation sequence is the highest. The ground repeatability calibration experiment is carried out 10 times for the optimal rotation sequence. The calibration results show that the range of all the error terms is less than its threshold, illustrating that the calibration result is stable and reliable. It is a real-time calibration method for all error terms on orbit, providing a reference method for the high-precision performance maintenance of the spacecraft integrated navigation system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.