Abstract
In this paper, we consider constrained optimization problems with set-valued objective maps. First, we define three types of quasi orderings on the set of all non-empty subsets of n-dimensional Euclidean space. Second, by using these quasi orderings, we define the concepts of lower semi-continuity for set-valued maps and investigate their properties. Finally, based on these results, we define the concepts of optimal solutions to constrained optimization problems with set-valued objective maps and we give some conditions under which these optimal solutions exist to the problems and give necessary and sufficient conditions for optimality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.