Abstract

AbstractThe present paper deals with the modelling and optimization of small bio‐probes that can be used for biological sensing; the bio‐probes can be classified as MicroElectroMechnical Systems (MEMS). The objective is to optimize the structure of the bio‐probes in order to maximize the sensing sensitivity. A biological coating results in a prestress on the sensing cantilever when certain molecules are present in the surrounding medium. The mechanical deformation due to the biological material is modelled by applying a prestress in the top layer of the bio‐probes. Topology optimization is used to improve the design. In the present work it is necessary to use an interpolation scheme different from the SIMP (power law) approach which is usually used in topology optimization. In calculating the sensitivities, needed for the optimization, complications due to the prestress occur, but also due to the coupling between the elastic field and the electric field which both must be used in an integrated model. These complications are dealt with and analytically obtained sensitivities are presented. Copyright © 2004 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.