Abstract
Approximate Bayesian computation (ABC) has gained popularity over the past few years for the analysis of complex models arising in population genetics, epidemiology and system biology. Sequential Monte Carlo (SMC) approaches have become work-horses in ABC. Here we discuss how to construct the perturbation kernels that are required in ABC SMC approaches, in order to construct a sequence of distributions that start out from a suitably defined prior and converge towards the unknown posterior. We derive optimality criteria for different kernels, which are based on the Kullback-Leibler divergence between a distribution and the distribution of the perturbed particles. We will show that for many complicated posterior distributions, locally adapted kernels tend to show the best performance. We find that the added moderate cost of adapting kernel functions is easily regained in terms of the higher acceptance rate. We demonstrate the computational efficiency gains in a range of toy examples which illustrate some of the challenges faced in real-world applications of ABC, before turning to two demanding parameter inference problems in molecular biology, which highlight the huge increases in efficiency that can be gained from choice of optimal kernels. We conclude with a general discussion of the rational choice of perturbation kernels in ABC SMC settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Statistical Applications in Genetics and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.