Abstract

In this paper we study the problem of computing wavelet coefficients of compactly supported functions from their Fourier samples. For this, we use the recently introduced framework of generalized sampling. Our first result demonstrates that using generalized sampling one obtains a stable and accurate reconstruction, provided the number of Fourier samples grows linearly in the number of wavelet coefficients recovered. For the class of Daubechies wavelets we derive the exact constant of proportionality.Our second result concerns the optimality of generalized sampling for this problem. Under some mild assumptions we show that generalized sampling cannot be outperformed in terms of approximation quality by more than a constant factor. Moreover, for the class of so-called perfect methods, any attempt to lower the sampling ratio below a certain critical threshold necessarily results in exponential ill-conditioning. Thus generalized sampling provides a nearly-optimal solution to this problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.